Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Musicians and nonmusicians alike use rhythmic sound gestures, such as tapping and beatboxing, to express drum patterns. While these gestures effectively communicate musical ideas, realizing these ideas as fully-produced drum recordings can be time-consuming, potentially disrupting many creative workflows. To bridge this gap, we present TRIA (The Rhythm In Anything), a masked transformer model for mapping rhythmic sound gestures to high-fidelity drum recordings. Given an audio prompt of the desired rhythmic pattern and a second prompt to represent drum kit timbre, TRIA produces audio of a drum kit playing the desired rhythm (with appropriate elaborations) in the desired timbre. Subjective and objective evaluations show that a TRIA model trained on less than 10 hours of publicly-available drum data can generate high-quality, faithful realizations of sound gestures across a wide range of timbres in a zero-shot manner.more » « lessFree, publicly-accessible full text available September 21, 2026
-
In the audio modality, state-of-the-art watermarking methods leverage deep neural networks to allow the embedding of human-imperceptible signatures in generated audio. The ideal is to embed signatures that can be detected with highaccuracy when the watermarked audio is altered via compression, filtering, or other transformations. Existing audio watermarking techniques operate in a post-hoc manner, manipulating “low-level” features of audio recordings after generation (e.g. through the addition of a low-magnitude watermark signal). We show that this post-hoc formulation makes existing audio watermarks vulnerable to transformation-based removal attacks. Focusing on speech audio, we (1) unify and extend existing evaluations of the effect of audio transformations on watermark detectability, and (2) demonstrate that state-of-the-art post-hoc audio watermarks can be removed with no knowledge of the watermarking scheme and minimal degradation in audio qualitymore » « lessFree, publicly-accessible full text available April 26, 2026
-
Every artist has a creative process that draws inspiration from previous artists and their works. Today, “inspiration” has been automated by generative music models. The black box nature of these models obscures the identity of the works that influence their creative output. As a result, users may inadvertently appropriate, misuse, or copy existing artists’ works. We establish a replicable methodology to systematically identify similar pieces of music audio in a manner that is useful for understanding training data attribution. A key aspect of our approach is to harness an effective music audio similarity measure. We compare the effect of applying CLMR [50] and CLAP [55] embeddings to similarity measurement in a set of 5 million audio clips used to train VampNet [24], a recent open source generative music model. We validate this approach with a human listening study. We also explore the effect that modifications of an audio example (e.g., pitch shifting, time stretching, background noise) have on similarity measurements. This work is foundational to incorporating automated influence attribution into generative modeling, which promises to let model creators and users move from ignorant appropriation to informed creation. Audio samples that accompany this paper are available at https://tinyurl.com/exploring-musical-roots.more » « less
-
We introduce VampNet, a masked acoustic token modeling approach to music synthesis, compression, inpainting, and variation. We use a variable masking schedule during training which allows us to sample coherent music from the model by applying a variety of masking approaches (called prompts) during inference. VampNet is non-autoregressive, leveraging a bidirectional transformer architecture that attends to all tokens in a forward pass. With just 36 sampling passes, VampNet can generate coherent high-fidelity musical waveforms. We show that by prompting VampNet in various ways, we can apply it to tasks like music compression, inpainting, outpainting, continuation, and looping with variation (vamping). Appropriately prompted, VampNet is capable of maintaining style, genre, instrumentation, and other high-level aspects of the music. This flexible prompting capability makes VampNet a powerful music co-creation tool. Code andaudio samples are available online.more » « less
An official website of the United States government

Full Text Available